

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS 9702/42

Paper 4 A Level Structured Questions

October/November 2016

MARK SCHEME

Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper	PLATINUM BUSINESS ACADEMY
	Cambridge International AS/A Level – October/November 2016	9702	42	
				0777898626

- 1 (a) force per unit mass
 - (b) (i) radius/diameter/size (of Proxima Centauri) ≪ /is much less than 4.0×10^{13} km/separation (of Sun and star)

(because) it is a uniform sphere

B1 [1]

(ii) 1. field strength = GM/x^2

=
$$(6.67 \times 10^{-11} \times 2.5 \times 10^{29})/(4.0 \times 10^{13} \times 10^{3})^{2}$$

C1

B1

[1]

$$= 1.0 \times 10^{-14} \,\mathrm{N \, kg^{-1}}$$

Α1 [2]

force = field strength \times mass

$$= 1.0 \times 10^{-14} \times 2.0 \times 10^{30}$$

C1

or

force =
$$GMm/x^2$$

=
$$(6.67 \times 10^{-11} \times 2.5 \times 10^{29} \times 2.0 \times 10^{30})/(4.0 \times 10^{13} \times 10^{3})^{2}$$
 (C1)

$$= 2.0 \times 10^{16} \,\mathrm{N}$$

Α1 [2]

(c) force (of 2×10^{16} N) would have little effect on (large) mass of Sun

B1

would cause an acceleration of Sun of 1.0 \times $10^{-14}\,\mbox{m}\,\mbox{s}^{-2}\!/\mbox{very small/negligible}$ acceleration

B1 [2]

or

2

(B1) (B1)

(a) (i) number of moles/amount of substance

В1 [1]

(ii) kelvin temperature/absolute temperature/thermodynamic temperature

B1 [1]

(b) pV = nRT

$$4.9 \times 10^5 \times 2.4 \times 10^3 \times 10^{-6} = n \times 8.31 \times 373$$

B1

$$n = 0.38 \text{ (mol)}$$

C₁

number of molecules or
$$N = 0.38 \times 6.02 \times 10^{23} = 2.3 \times 10^{23}$$

Α1 [3]

Page 3	Mark Scheme	Syllabus	Paper	PLATINUM
	Cambridge International AS/A Level – October/November 2016	9702	42	0777898626
				0///898020

or
$$pV = NkT$$
 (C1)

4.9 × 10⁵ × 2.4 × 10³ × 10⁻⁶ = $N \times 1.38 \times 10^{-23} \times 373$ (M1)

number of molecules or $N = 2.3 \times 10^{23}$ (A1)

(c) volume occupied by one molecule = $(2.4 \times 10^3) / (2.3 \times 10^{23})$ C1

= 1.04×10^{-20} cm³

mean spacing = $(1.04 \times 10^{-20})^{1/3}$ C1

= 2.2×10^{-7} cm ($allow 1 s.f.$) A1 [3]

(a) (sum of/total) potential energy and kinetic energy of (all) molecules/particles reference to random (distribution) M1

internal energy decreases A1 [3]

(ii) volume decreases so work done on ice/water ($allow work done negligible because \Delta V small$)

heating of ice (to break rigid forces/bonds) M1

internal energy increases A1 [3]

(a) (i) $0.225s$ and $0.525s$ A1 [1]

(ii) period or $T = 0.30s$ and $\omega = 2\pi/T$ C1

 $\omega = 2\pi/0.30$

3

4 (a) (i) 0.225 s and 0.525 s A1 [7 (ii) period or
$$T = 0.30$$
 s and $\omega = 2\pi/T$ C1 $\omega = 2\pi/0.30$

$$\omega = 21 \,\mathrm{rad}\,\mathrm{s}^{-1}$$
 A1 [2]

C1

(iii) speed =
$$\omega x_0$$
 or $\omega (x_0^2 - x^2)^{1/2}$ and $x = 0$ C1
= $20.9 \times 2.0 \times 10^{-2} = 0.42 \,\mathrm{m \, s^{-1}}$ A1 [2]

Page 4	Mark Scheme	Syllabus	Paper	PLATINUM BUSINESS ACADEMY
	Cambridge International AS/A Level – October/November 2016	9702	42	
				0777898626
0	r			

Oľ

(b)

C1) A1)	
B1 B1 B1	[3

B2

[3]

5 (a) transducer/transmitter can be also be used as the receiver

transducer both transmits and receives

receives reflected pulses between the emitted pulses

(needs to be pulsed) in order to measure/determine depth(s)

(needs to be pulsed) to determine nature of boundaries

- Any three of the above marking points, 1 mark each [2] **(b) (i)** product of speed of (ultra)<u>sound</u> and density (of medium) M1
- reference to speed of sound in medium Α1 [2]
 - (ii) if Z_1 and Z_2 are (nearly) equal, I_T/I_0 (nearly) equal to 1/unity/(very) little reflection/mostly transmission В1 if $Z_1 \gg Z_2$ or $Z_1 \ll Z_2$ or the difference between Z_1 and Z_2 is (very) large, then $I_{\rm T}/I_{\rm 0}$ is small/zero/mostly reflection/little transmission **B**1 [2]
- (a) E = 0 or $E_A = (-)E_B$ (at x = 11 cm) **B1**

$$Q_A/x^2 = Q_B/(20-x)^2 = 11^2/9^2$$

$$Q_A/Q_B$$
 or ratio = 1.5 A1 [3]

or

$$E \propto Q$$
 because r same or $E = Q/4\pi\epsilon_0 r^2$ and r same (B1)

$$Q_A/Q_B = 48/32$$
 (C1)

$$Q_A/Q_B$$
 or ratio = 1.5 (A1)

Page 5	Mark Scheme	Syllabus	Paper	PLATINUM BUSINESS ACADEMY
	Cambridge International AS/A Level – October/November 2016	9702	42	
				0777898626

(b) (i) for max. speed,
$$\Delta V = (0.76 - 0.18) \text{ V}$$
 or $\Delta V = 0.58 \text{ V}$

$$q\Delta V = \frac{1}{2}mv^2$$

$$2 \times (1.60 \times 10^{-19}) \times 0.58 = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^{2}$$

C1

$$v^2 = 5.59 \times 10^7$$

$$v = 7.5 \times 10^3 \,\mathrm{m \, s^{-1}}$$

(ii)
$$\Delta V = 0.22 \text{ V}$$

$$2 \times (1.60 \times 10^{-19}) \times 0.22 = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2$$

$$v^2 = 2.12 \times 10^7$$

$$v = 4.6 \times 10^3 \,\mathrm{m \, s^{-1}}$$

- 7 (a) (i) charge/potential (difference) or charge per (unit) potential (difference)
- **B**1 [1]

(ii)
$$(V = Q/4\pi\epsilon_0 r \text{ and } C = Q/V)$$

for sphere,
$$C = Q/V = 4\pi\epsilon_0 r$$

$$C = 4\pi \times 8.85 \times 10^{-12} \times 12.5 \times 10^{-2} = 1.4 \times 10^{-11} \,\mathrm{F}$$

(b) (i)
$$1/C_T = 1/3.0 + 1/6.0$$

$$C_{\rm T} = 2.0 \, \mu \rm F$$

(ii) total charge = charge on 3.0
$$\mu$$
F capacitor = 2.0 (μ) \times 9.0 = 18 (μ C)

potential difference =
$$Q/C = 18 (\mu)C/3.0 (\mu)F = 6.0 V$$

or

argument based on equal charges:

$$3.0 \times V = 6.0 \times (9.0 - V)$$

$$V = 6.0 \text{ V}$$

(iii) potential difference (=
$$9.0 - 6.0$$
) = 3.0 V

charge (=
$$3.0 \times 2.0 \ (\mu)$$
) = $6.0 \ \mu$ C

Pag	ge 6	Mark Scheme	Syllabus	Pape	PLATINUM BUSINESS ACADEMY
		Cambridge International AS/A Level – October/November 2016	9702	42	— 0777898626
					0777696626
8 ((a) P	shown between earth symbol and voltmeter		B1	[1]

		Cambridge International AS/A Level – October/November 2016 9702	42	
8	(a)	P shown between earth symbol and voltmeter	B1	[1]
	(b)	(i) gain = $(50 \times 10^3)/100 = 500$	C1	
		$V_{IN} (= 5.0/500) = 0.010 \text{ V}$	A1	[2]
		(ii) $V_{IN} = 5.0/5.0 = 1.0 \text{ V}$	A1	[1]
	(c)	e.g. multi-range (volt)meter c.r.o. sensitivity control		
		amplifier channel selector	B1	[1]
9	(a)	(by Newton's third law) force on wire is up(wards)	M1	
		by (Fleming's) left-hand rule/right-hand slap rule to give current in direction left to right shown on diagram	A1 A1	[3]
		in direction left to right shown on diagram	ΛI	[၁]
	(b)	force ∞ current or $F = BIL$ or $B = 0.080/6.0L = 1/75L$	C1	
		maximum current = $2.5 \times \sqrt{2}$ = 3.54 A	C1	
		maximum force in one direction = $(3.54/6.0) \times 0.080$ = 0.047N	C1	
		difference (= 2×0.047) = $0.094 \mathrm{N}$		
		or force varies from 0.047 N upwards to 0.047 N downwards	A1	[4]
10	nuc	l <u>ei</u> emitting r.f. (pulse)	B1	
	Ları field	mor frequency/r.f. frequency emitted/detected depends on magnitude of magnetic	B1	
	nuc	ei can be located (within a slice)	B1	
	cha	nging field enables position of detection (slice) to be changed	B1	[4]
11	(a)	(induced) e.m.f. proportional/equal to <u>rate</u> of change of (magnetic) flux (linkage)	M1 A1	[2]
	(b)	(for same current) iron core gives large(r) (rates of change of) flux (linkage) e.m.f induced in solenoid is greater (for same current) induced e.m.f. opposes applied e.m.f. so current smaller/acts to reduce current	B1 M1 A1	[3]

Pa	age 7	Mark Scheme	Syllabus	Paper	PLATINUM BUSINESS ACADEMY
		Cambridge International AS/A Level – October/November 2016	9702	42	0777898626
		or			
		same supply so same induced e.m.f. balancing it (rate of change of) flux linkage is same smaller current for same flux when core present		(B1) (M1) (A1)	
	(c)	e.g. (heating due to) eddy currents in core			
		heating due to current in) resistance of coils			
		nysteresis losses/losses due to changing magnetic field in core			
		Any two of the above marking points, 1 mark each		B2	[2]
12	(a)	(i) <u>electron</u> diffraction/ <u>electron</u> microscope (allow other sensible sugg	estions)	B1	[1]
	(ii) photoelectric effect/Compton scattering (allow other sensible sugg	estions)	B1	[1]
	(b)	(i) arrow clear from -0.54 eV to -3.40 eV		B1	[1]
	(ii) $E = hc/\lambda$ or $E = hf$ and $c = f\lambda$		C1	
		$\lambda = (6.63 \times 10^{-34} \times 3.00 \times 10^{8})/[(3.40 - 0.54) \times 1.60 \times 10^{-19}] = 4.35$	$5 \times 10^{-7} \text{ m}$	A1	[2]
	(c)	(i) wavelength associated with a particle that is moving/has momentum/has speed/has velocity		M1 A1	[2]
	(ii) $\lambda = h/mv$			
		$V = (6.63 \times 10^{-34}) / (9.11 \times 10^{-31} \times 4.35 \times 10^{-7})$		C1	
		$= 1.67 \times 10^3 \mathrm{ms^{-1}}$		A1	[2]
13		v image of a (single) slice/cross-section (through the patient) in from different angles/rotating X-ray (beam)		M1 A1	
		outer is used to form/process/build up/store <u>image</u> nage (of the slice)		B1 B1	

M1

Α1

[6]

repeated for many/different (neighbouring) slices

to build up 3D image

Page 8	Mark Scheme	Syllabus	Pape	r PLATINUM
	Cambridge International AS/A Level – October/November 2016	9702	42	- 0777898626
14 (a)	(i) ${}^{4}_{2}\text{He}$ or ${}^{4}_{2}\alpha$		B1	[1]
(ii) ¹ ₀ n		B1	[1]
(b)	(i) $\Delta m = (29.97830 + 1.00867) - (26.98153 + 4.00260)$		C1	
	= 30.98697 - 30.98413			
	$= 2.84 \times 10^{-3} \text{ u}$		C1	[2]
(ii) $E = c^2 \Delta m$ or mc^2		C1	
	= $(3.0 \times 10^8)^2 \times 2.84 \times 10^{-3} \times 1.66 \times 10^{-27}$			
	$= 4.2 \times 10^{-13} \text{ J}$		A1	[2]
	mass of products is greater than mass of A $\it l$ plus $\it lpha$ or			
	reaction causes (net) <u>increase</u> in (rest) mass (of the system)		B1	

[2]

B1

 $\alpha\text{-particle}$ must have at $\underline{\text{least}}$ this amount of $\underline{\text{kinetic energy}}$